" AD=AD52 735 CHARLES STARK DRAPER LAB INC CAMBRIDGE MA F/6 9/2
JOVIAL STRUCTURED DESIGN DIAGRAMMER (JSDD). VOLUME IV. USER'S M==ETC(U) . I
FEB 78 & GODDARDr M WHITWORTHr E STROVINK FJGGOI-TO-C-OQOI '
UNCLASSIFIED R=1120=VOL=4 : RADC=TR=T8=9=VOL=4

t E N D
_\llﬁl[&?

e

t

ADAQD2735

. -
s &
s

sAY NU.-
006 FILE CO

RADC-TR-78-9, Vol IV (of four)
Final Technical Report
February 1978

JOVIAL STRUCTURED DESIGN DIAGRAMMER (JSDD).
User's Manual ,

G. Goddard
M. Whitworth
E. Strovink

The Charles Stark Draper Laboratory, Inc.

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344)

Ag\RhDe | (19[TR-78-9- T J

" UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE R L S

- REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-78~9, Vol IV (of four) /|

“ 4 IA ¢aved o TV - pm € T
JO¥£ iTRUCTURED RESIGN RIAGRAMMER (JSDQ),a ‘(2 : .[Final Technical)(epst-
A ‘ epemmiser 76 - Octgtil 77
Ky rl r

1
VO/UH.-,‘ m, LLSer'ﬁ.,‘“.t l,_. =
/M R-1120-
"\’.'../

@ 306092-76-C-H498 T

G. ,boddard)
M. Mhitworth
E. /Strovink

- ING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
The Charles Stark Draper Laboratory, Inc. o AREAGNORICUNITINUMAERS

555 Technology Square FP.E. 62702F

Cambridge MA 02139 7.0. 55811412

1. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISIM) ll

Griffiss AFB NY 13441

14 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

Same 3:;_;:__[_7 @E </ / UNCLASSIFIED

ke 2 15a. DECL ASSIFICATION/ DOWNGRADING

P]/A SCH

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) =N

4 .

o 3
Same <.) e @

18. SUPPLEMENTARY NOTES r

RADC Project Engineer: Donald VanAlstine (ISIM)

L

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Structured Programming Preprocessor

Structured Design Diagram Flowcharter

Structured Extension JOVIAL J3 |
Parse Invocation Diagram

Parser Generator

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

.. The report presents the user's view of the JOVIAL Structured Design
Diagrammer along with user options and other information about running the
programs. y i 1

DD | 5n"s 1473 €oiTioN OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

40% 3§ J0H

USER’S MANUAL

This documernt was produced to satisfy the requirements
of contract number F30602-76-C-0408 with the Rome Air
Development Center. It is one of four companion
volumess

* JOVIAL Structured Design Diagrammer (JSDD)
Report Summary

This document is a summary of the contents of
the JSDD Final Report.

* JOVIAL Structured Design Diagrammer (JSDD)
Final Report

This volume presents the design techniques
for implementing the JSDD and describes the
use of Structured Design Diagrams.

* JOVIAL Structured Design Diagrammer (JSDD)
Program Description

This volume presents a detailed description
of the program implementation for purposes of
maintaining and/or modifying the JSDD.

* JOVIAL Structured Design Diagrammer (JSDD)
User’s Manual

This volume presents the user’s view of the
JSDD along with wuser options and other
information about running the program.

| ACCESS!N for
NTIS White Section
poC 3.1t Section [
¢ NANNQHSGTD g

S I T
BY

BISTRIBYTICN/AVAICAB!.(TY CODES
I : SPcCIAL |

1/2

Acknowledgement

[his report was prepared by [he Charles Stark Draper Laboratory,
Inc., under Contract F30602-76-C-0408 with the Rome Air
Development Center at Griffis Air Force Base.

Especial credit 1is due Margaret Hamilton, who pioneered
principles of Structured Programming at Draper Laboratory.
Saydean Zeldin originally suggested the symbology implemented in
the output of the JOVIAL Structured Design Diagrammer. Thanks
should go also to William Daly, who created the Structured Design
Diagrammer for the HAL language (currently being used on the NASA
Space Shuttle project). The authors are indebted to Victor
Voydock for his invaluable assistance in implementing a complete
MULTICS user interface which was wused successfully for the
duration of the JSDD 1implementation. The authors are also
grateful to J. Barton Dewolf whose many suggestions were of great
assistance throughout this effort.

)

TABLE OF CONTENTS

Section Page
1. Introduction >
2. Structured Design Diagram Description 7
3. Invocation Diagram Description 13
4. Running the JSDD System 16
5. Detailed Options , 19
6. Control Cards for Running the JSDD 25

Appendix A. The DDG and Invocation Diagrammer Options
Compool

le Introduction

Thisz document 1is a user-oriented description of the
input/output files and operating procedures necessary to run
the JOVIAL Structured Design Diagrammer (JSDD).

The JOVIAL Structured Design Diagrammer is designed to run
on all Honeywell Information Systems Inc. Series 6000
computers providing for application program use at least one
disk drive, one line printer, and 96K of user memory.
Additionally, the computer system should 1include as much
extra memory and as many extra input/output devices as are
required to execute the JSDD under control of the Honeywell
Information Systems Inc. Series 60 Level 66 and Series 6000
General Comprehensive Operating Supervisor (GCOS) Version
1/G. The consequences of running the JSDD on another
computer or operating system have not been determined. The
fact that the JSDD 1is written in JOVIAL J3 (a JOCIT
compiler) raises hopes that it may in fact be portable.

The JSDD produces a graphical representation of the control
and processing structure of programs written in the JOVIAL
J3 programming language, with or without structured
extensions (see Final Report, Section 6). It can be
thought of as the first component of an integrated software
analysis and documentation system which addresses itself to
the problem of standardizing the 1loose <collection of
software design guidelines known as "structured
programming." This first component consists of an
automated documentation system which produces two types of
diagramss Structured Design Diagrams (SDDs) and Invocation
Diagrams. SDDs provide a graphic display of program
control logic. Invocation Diagrams are a display of a
software system’s functional (calling) structure.

The experienced systems programmer will find the SDD and
Invocation Diagram valuable aids in understanding unfamiliar
programs. The SDD makes nested control 1logic transparent
and readable, while the Invocation Diagram provides a
detailed control map at a procedural level of abstraction.
Both of these tasks must be completed manually in the
absence of automated tools.

The JSDD has additional utility in system design
applications, because by 1its graphical representation it
highlights use of unstructured programming constructs as

well as poorly-considered control paths. Thus, it can be
used as a tool to encourage (and with incorporation into a
larger software analysis and documentation system, enforce)

good programming practices.

The use of the JSDD programs requires an understanding of
the JSDD diagrams produced as outputs thus, the User’s
Manual is arranged to reflect this prerequisite. First,
Section 2 discusses SDDs and Section 3 discusses Invocation
Diagrams. Section 4 then gives a general overview of JSDD
running procedures. Section 5 expands upon Section 4 by
describing the various options available to the JSDD wuser.
Finally, Section 6 introduces the control cards necessary to
run the JSDD programs in the MULTICS GCOS Encapsulator

environment.

2. Structured Design Diagram (SDD) Description

Structured Design Diagrams (SDDs) provide a graphic two
dimensional display of the nested logical sequences that
define the structure of a computer program. SDDs for JOVIAL
J3 are constructed from the two basic structural elements
shown in figure 2-1.

[I

SEQUENTIAL FLOW DECISION BRANCHING

Fioure 2-1. SDD Primitives

The rectangular box is used to contain elements that are
executed in sequence. Control enters from the top or left
side of the rectangle. Each element in a rectangle is
executed in sequence and control flows through the bottom of
the box.

The pentagonal box 1is used to contain two types of JOVIAL
constructs: module heads and decision making elements. A
module head is a <PROGRAM HEAD>, <PROC DESCRIPTOR> or <CLOSE
HEAD> (see the syntax definition of JOVIAL in Section 5 of
the JSDD Final Report). Control passes through the bottom of
a module head’s pentagonal box to the module’s code body.
Figures 2-2, 2-3 and 2-4 illustrate SDD representations of

module heaas.
START $ >

PROGRAM
CODE
BODY

rigure 2-2. SDD representation of <PRUGRAM HEAD>

PROC PROC'NAME () $ >

PROCEDURE
DECLARATION
CODE

BODY

Fioure ¢-3. SDD representation of <PRUC DESCRIFTUR>

CLOSE CLOSE'NAME $ >

I

CLOSE DECLARATION
CODE BODY

Figure 2-4., SDD representation or <CLOSE HEAD>

A decision making element 1is a JOVIAL construct which
directs the flow of control to one of two paths. Evaluctiion
of the contents of the pentagonal box determines the path to
which control 1is passed. Figures 2-5, 2-6, 2-7 and 2-8
illustrate the SDD representaions of JOVIAL’s decision
making elements. Non-standard decision making elements have
been introduced as structured extensions to JOVIAL J3. The
structured extensions are the Do While Loop, the Do Until
Loop and the Case Statement. Full descriptions of these new
constructs are available in Section 6 of the JSDD Final
Report.

CODE
IF ‘ '(BOOLEANFORMULA)S DONTROLLED
WHILE | BY DECISION
(BOOLEAN FORMULA)
0) unmiL ¢ 1800 . ! MAKING
l ELEMENT

Fiaure 2-5. SDD representation of the Ir Statement,
Do while Loop and Do Until Loop

Ficure 2-o.

Figure 2-7.

IFEITH >——| (BOOLEAN FORMULA) F

Ficure 2-8.

FOR | = (LOOP INDICES)>—— LooP

CASE [AA] — ﬁl (¢])

BODY

SDD representation of the For Loop

CODE FOR
/ CASE #
l m \ CODE FOR
| IS4 CASE 1
CODE FOR
‘ CASE N
CODE FOR
[ELSE] ELSE CASE

SDD representation of the

Do Case Statement

CODE
BODY

-—| ORIF (BOOLEAN FonMuLA)——

CODE
BODY

‘——LORIF (BOOLEAN FORM@——

CODE
BODY

SDD representaion of the Alternative Statement

Pentagonal boxes containing decision making elements are
entered from the top or from the left. In general, they are
exited by taking the horizontal path (to the right) or by
taking the vertical path (through the bottom of the
pentagon). The horizontal path is taken if the decision
element is evaluated to be TRUE. Otherwise, the vertical
path 1is taken. Note that the SDD representations of the Do
Case Statement and Alternative Statement contain //DO CASE~“”
and -“/IFEITH’/ decision making elements. These elements are
“always evaluated to be TRUE.

If a decision making element is evaluated to be false and
its pentagon has no vertical path, then the SDD execution
path must be retraced until a pentagon is found which has an
unexecuted vertical path. If such a pentagon is found, then
the vertical path must be followed. If no such pentagon 1is
found, then the execution of the module has been completed.

It is important to note that Goto Statements appear 1in
rectangular boxes and their effect upon a program?s flow of
control is not illustrated by an SDD. Restrained usage of
the Goto statement will result in SDDs which will better
i'llustrate a program’s flow of control. The structured
extensions to JOVIAL J3 (see JSDD Final Report, Section 6)
were introduced to minimize the JOVIAL programmer/s reliance

upon the Goto Statement.

Occasionally, the 1level of nesting (of decision making
elements) in a program makes it impossible to display a code
block in the available number of page columns. In such
cases, it is necessary for the JSDD to create what 1is
referred to as a stump. A stump is a diagram continuation.
When the width of a page is such that the display of a code
block can not be accommodated, that code block“’s logical
position in the SDD is filled with a stump reference
display. The stump reference display consists of a stump
reference number by which the diagram continuation can be
located. If the HEADING option is on (see Section 5.2), then
the stump reference number is the number of the page on
which the continuation appears. Otherwise, the stump

reference number is the stump’s sequence number.

10

The JSDD recognizes three types of comments: in-line
comments, type-1 (or same line) comments and type-2 (or
C-type) comments. In-line comments are comments which are
embedded in a JOVIAL statement. In-line comments are
displayed in their -embedding statements in SDDs. A type-|
comment is a comment which begins on the same 1line as a
IOVIAL statement in the input file. In SDDs, type-1 comments
appear below the statements to which they refer. A type-2
comment is a comment which appears by itself in the input
file. SSDs display type-2 comments next to the line which
connects the code blocks which precede and succeed the
comment.

Figure <=~9 is a sample page from a desian diagram produced
by the JSDD system.

11

BEST AVAILABLE COPY

andino qas jo eved ardues *4-z 2InST4

etesesacenaterececectsntersatete
3714 IndIN0 »
o8 3INB.4H1 *Tedl 2,02714 1NAIN0.
e 8 10@.aN2 *1d¥) T1.13113 INdNTe saeetsasace

o r8.dW1 *TdKL 2.0

. $1 = (1.63713)S0de=~~

®00escssscncitnesate

ecsnssssenissoine
. $ 0S4 o
«*ENIB.NT.SI3Y 2.£3714 INdIN0e===s $ %10.€4 03
esencece

$ 1 J1¥0e-

ssene

000 000000000000000000000000000a0

. .
o8 4NO.dNL *TdW) T.€3014 10din0e
o8 iNB.dWl *TdM) 2,£3714 INdNTe ey

. $ 7 = (2.72113)50de==-0 $ 1 JIW0

0600000000 0nessenentde

weeeee
o581
vessee

e @

.
ee0saccatensited o

$ %N9.£4 B3 la-t-e

le-t=0

eedee

esssscsee
Hi1T134Te===e
sessesane

secesssse se0ee

.

.

.

.

.

.

.

.

.

sevssese ascee
Wi133la===a S 1 = ALdWI.£f3 *V = I ¥04e

o 8 2.23714 ANLOO0 L1(MSe
o 8 T.£3714 JNdNT AMNSe

800000000000 0d0enittedsitntiee

- LT ITRT LS
« 8 2.03714 .
o $ T.€3714 104FT N3dOe

tecsassecncosssdsennniie

e 2.£3713
01 1.£3713 HO¥J ¥IISNVEL oo

esssenssonanse
o 3 ANALINO LNNS.e
o $ 2.£3714 LNINI INNS.
ssseccecccncsse

.
$ 1 - Aldu3.f4

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

oo ToE3VF4 o
04 2,634 NHOWS WIISNVEL .0 o Seesscesasoses
temcce § £3VA.N3Ne

esenee
-s Wi133le
esas ssssessee

£301UN. IJSHVNL SO NVEIVIO NIISIO
wasMVUIVI@ NITSIE GIWALINVLS Wiser ANOIVWOSYY ¥I4VNO S D

3. Invocation Diagram Description

The Invocation Diagrammer produces two different outputss
(1) a list of procedures that are nembers of one or more
recursive invocation loops, and (2) the Invocation Diagram
itself.

The first output, if it appears on the diagram, occurs
before the actual diagram under the heading "ULTIMATELY
SELF-RECURSIVE." Under it are listed all procedures that
call themselves, either directly or indirectly. An example
of a direct recursive call is a procedure which contains, as
part of 1its code, a call to itself. Indirectly recursive
calls are best illustrated, again, by an example. Suppose
procedure A can call procedure B which can call procedure C.
If, as part of 1its code, procedure C contains a call to
procedure A, all three procedures (A, B, and C) can
theoretically call themselves,.

The Invocation Diagram supplies recursion information for
two reasons. First, the diagrammer has to detect recursive
procedures because its algorithm for producing the
Invocation Diagram 1is 1itself recursive. A recursive
procedure could thus cause the diagrammer to diagram
forever. Therefore, recursive procedures are only expanded
once in the diagram, and thereafter are simply printed and
flagged. Since this affects the readability of the diagram,
the recursion information ought to be summarized for the
user.

Secondly, it can be argued that recursion has no place in
JOVIAL programs (JOVIAL J3 does not support recursion), and
thus should be banned. The recursion information can be
thought of as a warning to the programmer that illegal
recursion is a possibility in the submitted program
structure. Note that the Invocation Diagrammer only reports
the possibility of recursion - it is quite possible that the
program in question avoids actually making a recursive call.

The second output is the Invocation Diagram itself. The
diagram comes in two parts: a main procedure diagram and
diagrams of continuations and independent routines. The
diagram of the main procedure, if it occurs, occurs first.,
Invocation Diagrams are quite simple to read - all procedure
names which are connected horizontally to a vertical line
are called by the procedure whose name started the vertical
line. If the main program exists, it is the top 1level of

AT

the diagram. For example?

--PROCI

/

~-PROC2+

—PROC4

4
P4
4
/’ b4
4
b4
4

-—PROCS5*

[S O O U S N O O SN

In this example, PROCI calls PROC2, PROC3, and PROC5.
Additionally, we see that PROC3 calls PROC4, and some
invisible procedure calls PROCI. That procedure is at the
top level of this particular diagram, because PROCI hangs
off the leftmost vertical 1line possible. There is still
more information heres we know PROC2 1s an external
procedure because it 1is flagged with a "“+", PROCS is
recursive - it is flagged with a "%,

Main diagram continuations (caused by running off the right
side of the page) and independent procedures (procedures not
called by any of the procedures which are directly or
indirectly called by the main program) occur at the end of
the diagram, under the heading WCONTINUATIONS AND
INDEPENDENT ROUTINES." Continuations consist of ‘“stumps"
which correspond to similar "stumps" in the main diagram.
If confronted by:

4

|

in the main program, the user can find the continuation
below, which starts withs

Stump continuations occur in numerical order, after
independent procedure diagrams.

The aim of the diagrammer 1is to diagram all procedures,

14

regardless of whether they are called (directly or
indirectly) by the main program. However, the fact that a
procedure 1is not called directly or indirectly by the main
program is not a guarantee that it will appear as an
"independent" procedure. It is quite possible that a second
"independent" procedure whose diagram is output before that
of the first procedure may call the first. In that case,
the first procedure’s "independent" diagram is suppressed.
Nevertheless, the first procedure’s diagram will have been
Jenerated as part of the second procedure’s diagram. No
procedure will ever remain both uncalled and undiagrammed.

4. Running the JSDD System

The JSDD system consists of three programss the Design
Diagram Data Base Generator (DDDG), the Design Diagram
Generator (DDG) and the Invocation Diagrammer.

The DDDG performs a syntactic analysis of the input JOVIAL
program and outputs a three file data base (for use by the
DDG and the Invocation Diagrammer). The DDDG is designed to
analyze any program that has been compiled by JOVIAL J3 with
no error or warning messages. Only one JOVIAL J3 constraint
has been altered - the largest DEFINE directive that may
occur 1is one containing 132 characters (instead of 300),
However, neither of these limits is a real constraint on
DEFINE directive size, since DEFINEs can be nested to any
depth.

The DDG outputs a Structured Design Diagram (SDD) of the
input program in the format specified by the preset
variables in the compool OPT (see Section 5.2).

The Invocation Diagrammer outputs an invocation diagram of
the 1input program in the format specified by the preset
variables in the compool OPT.

Since all diagram formatting is performed by the DDG and
Invocation Diagrammer, one execution of the DDDG on an input
program is sufficient to produce diagrams having a wide
variety of formats.

The DDDG (DDDG.OBJ) must be loaded with the object segments
SYNTH.0BJ, NTABLES.0BJ, DATA.0OBJ and SPOOL.0BJ. The DDDG
requires five filess

(logical unit number)
]
The JOVIAL program to be diagrammed.

12
The DDDG message file. This file will contain any
error messages generated by the DDDG execution.

13
FILE 1| (see the JSDD Program Description Section
4.4), This file is part of the DDG data base.

14
FILE 2 (see the JSDD Program Description, Section
4.,4), This file is part of the DDG data base.

15

FILE O (see the JSDD Program Description, Section
4.4). This file is the data base used by the
Invocation Diagrammer.

The DDG (DDG.0BJ) must be loaded with the object segments
OPT.0OBJ, DEBUG.0BJ and SPOOL.0OBJ. The DDG operates on ten
filess

(logical unit number)
1l
FILE | (from the DDDG).

12
The DDG message file. This file contains error
me ssages and debugging messages generated by a DDG
execution.

13
FILE 2 (from the DDDG).

14
FILE 371 (FILE 3 version | - see the JSDD Program
Description, Section 4.5.1 and Appendix C). This
file is part of the DDG intermediate data base and
can be destroyed after DDG execution.

15
FILE 471 (FILE 4 version | - see JSDD Program
Description Section 4.5.1 and Appendix C). This
file is part of the DDG intermediate data base and
can be destroyed after DDG execution.

16
PUTOUT’1 (temporary diagram version 1). This file
can be destroyed after DDG execution.

17
FINAL/OUT. This file contains the SDD produced by
the DDG.

18
FILE 342 (FILE 3 version 2). This file is part of
the DDG intermediate data base and can be
destroyed after DDG execution.

19
FILE 472 (FILE 4 version 2). This file is part of
the DDG intermediate data base and can be
destroyed after DDG execution.

20

PUTOUT“2 (temporary diagram version 2). This file
can be destroyed after DDG execution.

The Invocation Diagrammer (INVOC.OBJ) must be loaded with
the object segments OPT.0OBJ and SPOOL.0BJ. The Invocation
Diagrammer operates on three filess

(logical unit number)
R

FILE O (from the DDDG).

12
The Invocation Diagrammer message file. This file
will contain any error messages generated by the
Invocation Diagrammer.

13

The invocation diagram.

Section 6 contains the control cards necessary to run the
JSDD components on the MULTICS GCOS simulator.

18

T ———

5. Detalled Options

This section 1lists and describes detailed options for
running each of the JSDD programs. Sections 5.1, 5.2, and
5.3 discuss options for the Design Diagram Database
Generator, the Design Diagram Generator, and the Invocation
Diagrammer, respectively.

5.1 DDDG Options

Although most formatting of the design diagrams should be
done with the DDG options, there are two options available
with the DDDG which directly impact the content and
appearance of the final SDDs.

These options are set by means of comment *toggles*, which
are inserted into the source input file by the user either
as extra comments or as additional text 1in existing
comments. The special form of the toggle allows it to be
distinguished from ordinary comment text. Toggle syntax {is
as followss

(1) -““/<any text> [<toggle name>] <any text>’“
ors
(2) “’<any text> [“<toggle name>] <any text>’/

Only the first toggle in a comment is processeds all others
are ignored.

The syntax in case (1) above means that the toggle is to be
turned gnt case (2) means that it is to be turned off.
These actions are forced regardless of the toggle’s current
state.

For example,

#4COMMENT TEXT COMMENT TEXTUEXPANDICOMMENT TEXT*“

would turn on the EXPAND toggle, while

##COMMENT TEXT COMMENT TEXT(“EXPAND]CGMMENT TEXT-¢

would turn it off.

The two toggles currently available are EXPAND and ASIS.
When EXPAND is on, the expanded text of each DEFINE
directive (macro) name is substituted for the name. EXPAND
toggles can appear anywhere in the source input.

The ASIS toggle is more complex, but its use can lead to
much improved SDDs. When ASIS is on, each complete source
input text 1line becomes one line in the output SDD. The
utility of this can easily be seen$ suppose that a user had
set up a portion of a program (say, data declarations) in a
special manner, so that certain items appeared under certain
columns. He/she would not want the Design Diagrammer to
chop up this carefully constructed pattern, as it almost
certainly would. The solution is to insert ASIS "brackets*
around the code in question. The Design Diagrammer will
then preserve this special code “as-is".

The only rules governing placement of ASIS toggles ares

1) ASIS toggles must come in pairs, or "brackets"s for
every instance of an ASIS activation, there must be a
de-activation.

2) ASIS brackets can only occur where it would be
semantically and syntactically 1legal to place JOVIAL
BEGIN-END brackets (this does not include use of BEGIN and
END in array or table declarations).

Failure to follow these rules will invariably result in
serious DDDG errors and fatal DDG errors.

There 1is another toggle implemented, called DEBUG. This
causes a history of the DDDG parse to be written to the
error file. Although wuseful for debugging, and for those
interested in the mechanics of an LALR(k) parse, DEBUG is of
no value to the ordinary user.

5.2 DDG Options

The DDG accepts options which permit the user to specify a
wide variety of JOVIAL Structured Design Diagram formats.

The options are defined in a common block in the OPT compool
(see Appendix A).

There is no facility currently available for setting the DDG

options. Alteration of options involves editing the options
compool and recompiling it.

20

following 1is a 1list of option declarations and

descriptions of their meanings and uses.

DISPLAY/DELIM B P O $

If DISPLAY’/DELIM is on (i.e. preset to 1), BLOCK
DELIMITERS are displayed on the design diagram.
Oterhwise, they are not.

BLOCK DELIMITERS ares

1) BEGINs which start COMPOUND STATEMENTs

2) ENDs which terminate COMPOUND STATEMENTs and
ALTERNATIVE STATEMENTs

DISPLAY/DELIM also controls the printing of COMMENTS
and LABELS associated with the BLOCK DELIMITERS.

It is recommended that DISPLAY/’DELIM be turned off
unless the input program has important COMMENTS or
LABELS associated with BLOCK DELIMITERS.

DOUBLE’SPACE B P O $
If DOUBLE’SPACE is on, program text within the diagram
is double spaced, otherwise, text is single spaced.

Double spacing can increase the execution time of the
DDG significantly if the input program is large
(because of the double buffering system—see Section
4.5.3 of the JSDD Program Description).

It is recommended that diagrams of large programs be
single spaced.

MARGIN I 36 S P 5 s

MARGIN sets the left margin of the diagram. The above

declaration will cause five blank columns to begin each
line of the diagram.

MESS’SW I 36 S P O $

MESS’SW directs error and debuy messages (see JSDD
Program Strucure Section 7.2) to either a terminal or
to an output file. If the value of MESS’SW is preset to
Oy then output 1is directed to the file whose device
number is 12. Otherwise, output is directed to the user

21

P —

The

ITEM
3) [END DOI
4) [END CASE]

ITEM

ITEM

ITEM
terminal.

e

ITEM

ITEM

ITEM

ITEM

PAGE/INGTH I 36 S P 60 §

PAGEZLNGTH should be set to the number of print lines
on the paper on which the diagram is to be printed.
PAGE’LNGTH cannot be used to reserve space at the
bottom of pages for page footers. A footer feature is
not available on this version of the JSDD.

PAGE’WIDTH I 36 S P 132 $ p
PAGE’WIDTH is the number of the rightmost column which
is to be used for printing. The readability of diagrams
is improved as the difference of PAGE/WIDTH and MARGIN
increases (the number of stumps decreases). Execution
time can be 1improved by setting PAGE/WIDTH to a high
value and MARGIN to a 1low one because fewer output
lines are required.

ST’MAX S P 35 s

ST’MAX 1is the maximum number of columns which may be
spanned by the text of a statement unit before
wraparound occurs.

In general, a low valued ST/MAX will produce a diagram
having fewer stumps than a high valued ST/MAX. However,
a diagram produced with a low valued ST/MAX may be
difficult to read.

The value of PAGE/’WIDTH should be considered when
assigning a value to ST/MAX.

HEADING B P I §

If HEADING is on page headings are displayed at the top
of each diagram page. Also, pages are numbered, stumps
are referenced by page numbers and a table of contents
is available.

If HEADING is off, no page headings are displayed,
pages are not numbered, stumps are referenced by
sequence number and no table of contents is available.

The HEADER, PGM/NAME, NAMEZINDEX and HEAD’NO options
described below relate to the HEADING option.

ARRAY HEADER 10 h 150 $

The HEADER array contains the text to be displayed as
page headings (if HEADING is on). Elements of HEADER
must be preset. For examples

BEGIN

21H(DRAPER LAB DIAGRAMMER)

I 1H(DIAGRAM OF)

END

ITEM

ITEM

ITEM

ITEM

ITEM

In this case, page three’s heading might appears
DRAPER LAB DIAGRAMMER PAGE 3
DI AGRAM OF PROGRAM/NAME
HEADER (s0$) will always be followed by the page number
which will start in column PAGE/WIDTH-10. Care should
be taken to avoid overwriting the last ten columns.

PGM’NAME h 150 $

PGM’NAME contains the name of the program being
diagrammed. The contents of PGM’NAME will appear in the
page headings of pages displaying the diagram of the
main program.

NAMEZINDEX I 36 S P | §

NAMEZINDEX is the index into HEADER of the text line in
which the name of the program, procedure or close being
diagrammed will appear. In the above example,
NAMEZ INDEX was set to one. NAMEZ/INDEX may be set to a
nejative number if display of the module name is not
desired.

HEAD’NO I 36 S P 1 $
HEAD’NO is the index of the 1last element of HEADER
which was preset. In the above example, HEAD/NO would
have been set to one.

Normally the JSDD leaves one blank 1line between the
page heading and the diagram text. The number of
intervening blank lines can be increased by presetting
additional HEADER elements to IH() and incrementing
HEAD’NO accordingly.

TABLE/OF/CONTENTS B P 1 $

If TABLE/OF/CONTENTS and HEADING are both on, then a
table of contents 1is generated for the diagram. The
table lists the modules displayed in the diagram and
the pages on which the displays begin.

The table of contents appears after the title page (if
there is a title page).

TITLE’SK B P 1| $

TITLE’SW controls the printing of the title page. If it
is on, the title page appears on page one (and
subsequent pages, if more are necessary). The array
TITLE and TITLE’NO also relate to the TITLE“SW flag.

23

ARRAY TITLE 70 H 150 $
The TITLE array contains the text to be displayed on
the title page. Its elements are preset the same way
that HEADER’s elements are preset. <

ITEM TITLE/NO I 36 S P I $

TITLE’NO is the index into TITLE of the last preset
element. 5

5.3 Invocation Diagrammer Options 3
The Invocation Diagrammer has only three user options,
PAGE“WIDTH, PAGE/LNGTH, and PGM’NAME. - A1l of these options
are set exactly the same way as they are for the DDG. In
fact, the Invocation Diagrammer uses an exact copy of the
DDG options compool for its own options. This being the
case, the same compool object segment .can be loaded for the
Invocation Diagrammer that is loaded for the DDG.

Thus, in most cases it will not be necessary to set
Invocation Diagrammer options - simply 1load the options
compool object segment used te run the DDG. However, if the
DDG was not run, or a PAGE/’WIDTH, PAGE/LNGTH, or PGM’NAME
(title name) change needs to be made, refer to Section 5.2
for detailed instructions and default attributes.

£

3

g

Bt —

6. Control Cards For Running the JSDD

The following sections give detailed GCOS Encapsulator
control cards for running the various programs which make up
the JOVIAL Structured Design Diagrammer (JSDD). These
control cards are applicable to the GCOS Encapsulator system
available under the MULTICS operating system, A mapping
from these control cards to actual GCOS control cards is
straightforward, made necessary only by the differences
between MULTICS and GCOS file system structure.

Cards common to all decks are SNUMB, IDENT, LOWLOAD, OPTION,
LIMITS, and ENDJOB. All these are standard, except for
LOWLOAD and LIMITS. LOWLOAD is present because of bugs in
both JOVIAL and the GCOS Encapsulator loader. The JOVIAL J3
compiler supplied for this contract generates incorrect
function linkages which overwrite areas of low core at
execution time. The LOWLOAD card ($ LOWLOAD 10000) causes
a blank area of 10000 words to precede all programs. This
ensures that nothing is loaded into the region that JOVIAL
may overwrite. As for the GCOS Encapsulator loader, it
simply does not function properly without the LOWLOAD card.

The LIMITS card is included in all control card decks. 84k
is the minimum core region that should be specified (92K for
the DDG) - the time limit field should vary with the size of
the program to be diagrammed. Time 1limits 1in the sample
control <cards are extremely highg the built-in JOVIAL
default should be adequate in most cases.

There is no execute card in any of the sample control card
decks - this 1is because that card 1is 1included in the
"canned" deck which is inserted at run time in place ofs

$ select >misc_libraries> jocit>execute

This "canned" deck consists of the following cards?

$ library zx,*z

$ execute dump

$ prmfl Z*x,r,ry>ml> jocit> jovlib.020377

$ prmfl *Z,r,S,>ml>jocit>0ldlib.020377

The dump option can be deleted at the user’s discretion.
Sections 6.1, 6.2, and 6.3 contain and describe the control

cards used to execute the DDDG, the DDG, and the Invocation
Diagrammer, respectively.

&5

e i B e s e e L S —

|

H
6.1 DDDG Control Cards
The control cards needed to execute the DDDG ares
$ snumb efs
3 $ ident Strovink.5581cl1412
$ lowl oad 10000 |
$ option jovial |
$ select phi8.0bj i
$ select ntables.obj ;
$ select data.obj |
$ select synth.obj |
$ select spool.ob j
$ select >misc_libraries> jocit>execute
$ limits 90,84k
$ prmfl 10yW,5S, jovwrk>phi8.mon.list
$ prmf1l 11,w,5,ph24.gcos
$ prmfl 12,W,S,error24
$ prmfl 13,w,5,ph24f11
$ prmf 1 14,w,s5,ph24f2
$ prmfl 15,w,s,ph24f0
$ end job
Ob ject files loaded by this deck ares ph18.0bj (DDDG),
ntables.obj (parsing tables), data.obj (global variable
declarations), synth.obj (external SYNTH procedure), and
spool.obj (compool object file for string package).
Files used by DDDG aret 10 (not currently used), 11 (source
input to DDDG), 12 (error file), 13 (DDDG output file I 1
(“FILE 1")), 14 (DDDG output file 2 (MFILE 2“)), and 15 :
E (DDDG output file O ("FILE O")).

6.2 DDG Control Cards ﬂ

The control cards needed to execute the DDG ares

$ snumb mhw

$ ident WNhitworth.5581cl412

$ lowload 10000

$ option jovial

$ select ph24.c5§

$ select SpoCi.obj

$ select opt.obj

$ select debug.obj

$ select >misc_libraries» jocit>execute
$ limits 999, 128k

$ prmfl 10,Ww,5, jovwrk>ph24.mon.list

26

it e e

et il

$ prmfl 1l,w,5,ph24f 1
$ prmfl 12,w,s,blah

$ prmfl 13,Ww,5,ph24f2
$ prmfl 14,w,5,ph24f31]
$ prmfl 15,w,5,ph24f41
$ prmfl 16 WyS,tmp |

$ prmfl 17,Ww,s,0ut’ph24f
$ prmfl 18,w,5,ph24f32
$ prmfl 19,wWw,5,ph24f42
$ prmfl 20,W,s,tmp2

$ end job

Ob ject files loaded by this deck ares ph24.0bj (DDG),
spool.obj (compool object file for string package), opt.ob}
(option compool object file), and debug.obj (debug toggle
compool object file).

Files used by the DDG ares 10 (not currently used), 11
(YFILE 1" from DDDG), 12 (error file), 13 ("FILE 2" from
DDDG), 14 (first of double-buffered pair of temporary files
referred to as "FILE 3"), 15 (first of double-buffered pair
of temporary files referred to as "FILE 4"), 16 (first of
double-buffered pair of temporary output files), 17
(permanent output file), 18 (second of double-buffered pair
of temporary files referred to as “FILE 3"), 19 (second of
double-buffered pair of temporary files referred to as "FILE
4"), 20 (second of double-buffered pair of temporary output
files).

Files 14,15,16,18,19, and 20 can and should be deleted
following execution of the DDG. This can be accomplished in
the control card deck by appropriate changes in the file
cards. Files 11, 12, and 13 should be deleted with
discretion, since another Design Diagram with different
format specifications may be desired.

6.3 Invocation Diagrammer Control Cards

The control cards needed to execute the Invocation
Diagrammer ares

$ snumb efs

$ ident Strovink.558I1cl412

$ lowload 10000

$ option jovial

$ select invoc.obj

$ select spool.obj

$ select opt.obj

$ select >misc_libraries> jocit>execute
$ limits 25,84k

27

prmfl 10,W,S, jovwrk>invoc.mon.list

$ prmfl 11,wys,tstfO
$ prmfl 12,WyS4€rIrors
$ prmfl 13,w,5,ph24
$ end job

Ob ject files loaded by this deck ares invoc.obj (Invocation
Diagrammer), spool.obj (compool object file for string
package), and opt.obj (option compool object file).

Files used by the Invocation Diagrammer are? 10 (not

currently used), 1l ("FILE O" from DDDG), 12 (error file),
13 (Invocation Diagrammer output).

28

TR T T T

REFERENCES

Dahl' O.-Jo' Diijtra, El W.. and Hoare, Co Ao Ro'
Structured Programming, Academic Press, New York, 1972,

Hamilton, M., and Zeldin, S., Iop-Down, Bottom-Up
structured Programming and PBrogram Structuring,
(Revision 1), Charles Stark Draper Laboratory, Inc.,

Cambridge, Ma. = E-2728, December 1972.

McGowan, C. L., and Kelly, J. R., ITop=Down Structured

Brogramming Technigques, Petrocelli/Charter, New York,
1975,

otandard Computer Programming Language for Air

Eorce Command and Control Systems, Short Titles CED
2400, Air Force Manual AFM 100-24, Reprint dated 21
April 1972.

structured Programming Series, Yolume I,
Programming Languages Standards, Einal Report, IBM
Corporation, FSD 74-0288, March 15, 1975.

DeRemer, F. L., Practical ITranslators for

LB(K) Languages, Ph.D. Thesis at the Massachusetts
Institute of Technology, Cambridge, Massachusetts,
Sept. 1969.

Lalonde, W. R., An Efficjent LALR Parser Generator,
[echnical Report CSRG-2, M.Sc. Thesis, University of

Toronto, Toronto, Ontario, 1970.

McKeeman, W. M., Horning, J. J., and Wortman, D. B.,

A Compiler GCeperator Implemented for the IBM
System/360Q, Prentice Hall, 1970.

29

Appendix A. The DDG and Invocation Diagrammer Options
Comp ool

All DDG user options are contained in the compool OPT which
is shown below. Setting options involves changing the preset
values in OPT and recompiling the result.

start $

2 This is the options compool for instructions ‘7
¢ in setting options , see JSDD User’/s Manual. /7
common options $

begin

item display’delim b p O $

item double’space b p O §$

item margin i 36 s p 5 §

item mess’sw i 36 s p 1| §

item page’lngth i 36 s p 60 §

item page’/width i 36 s p 132 s

item st/max i 36 s p 30 s

item heading b p 1 $

array header 10 h 150 $

begin

57h(c s draper laboratory jovial structured design diagrammer)
18h (DESIGN DIAGRAM OF)

end

item pgm’name h 150 p 21h(the design diagrammer) $
item low’lim i 36 s p 20 $

item max’width i 36 s p 40 $

item name/index i 36 s p | §$

item head’no i 36 s p | $

item table’of’contents b p | $

ftem title’sw bp | §

array title 70 h 150 $
begin

th()

1th()

th()

4 1h(this listing consists of output from)
52h(the charles stark draper laboratory’s jovial j3)
34h(structured design diagrammer.)

th()

1th()

1th()

1h()

42h(principal designers and implementors)
1h()

37h(gary w. goddard, csdl staff)

39h(mark h. whitworth, csdl staff) 1
52h(eric f. strovink, graduate student, m.i.t.)
25h(computer science division)

57h(the charles stark draper laboratory, inc., cambridge, ma.)
the)

end

item title’no i 36 s p 17 §
end
term $

